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Abstract

Recent advances in biosensors technology and mobile electroencephalographic (EEG)
interfaces have opened new application fields for cognitive monitoring. Recently,
deep learning (DL) has also shown great promise in helping make sense of EEG sig-
nals. This work aims to assess the potential of deep learning methods for the auto-
matic classification of subjective music preference using EEG signals. EEG data from
22 subject during a passive music listening task was collected and used as training
data for five different Convolutional Neural Network (CNN) architectures and two
baseline models using traditional machine learning classifiers Support Vector Ma-
chines (SVMs) and k-Nearest Neighbour (kNN). The results show that the baseline
model SVM achieved best accuracy at 45.13% and that deep learning approaches
require bigger EEG datasets for the classification of subjective music liking.
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Chapter 1

Introduction

A Brain-Computer Interface (BCI) is a system that translates activity patterns of the
human brain into messages or commands to communicate with the outer world.
Traditionally, BCI systems are used for neuroprosthetics and building communica-
tion channels for patients with disabling neurological disorders. However, recent
advances in commercial biosensor technologies and deep learning methods have
opened up innovations of BCIs outside of the clinical domain, giving rise to potential
novel applications of non-invasive BCIs in everyday life.

Electroencephalography (EEG), the measure of electrical fields produced by the
active brain, is the most commonly used non-invasive neuroimaging technique. In
clinical settings, EEG finds its use in sleep stage monitoring and epilepsy diagno-
sis, often requiring clinician’s expertise to operate. Low-cost wireless consumer EEG
devices, such as the Emotiv or Neurosky headsets [32], have shown potential for
applications in real-time cognitive and emotional monitoring. Among them, the con-
venient bio-assessment of music-liking level emerges as a technological achievement
that would majorly enhance current music recommendation systems.

Previous research have explored using EEG signals to classify music liking prefer-
ence. Two recent works are of particular relevance to this project. Hadjidimitriou et
al. [39] used different feature extraction methods and traditional machine learning
methods to classify liked or disliked music across different subjects. Adamos et al.
[5] identified EEG-specific biomarkers for music appreciation and implemented a
real-time music recommendation system on a per-subject personalised basis. Both
serve as important proof-of-concept studies on interfacing commercial EEG devices
with a music recommendation system based on subjective liking.

EEG signals are characterised as high-dimensional, non-stationary time series data
with low signal-to-noise ratio. The classification of EEG signals is a challenging task,
traditionally involving hand-crafted features, and requiring heavy investments in
both expertise and time. Deep learning, in particular, Convolutional Neural Net-
works (CNNs), is emerging as a promising tool for EEG classification as its end-to-
end nature bypasses the need for heavy feature engineering. In the last year alone,
three comprehensive reviews have examined the use of deep learning in recent EEG
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Chapter 1. Introduction

studies of different applications, including emotion recognition, cognitive monitor-
ing, and BCIs; all have concluded that deep learning methods achieve state-of-the
art results, and there is much potential in the field [91] [29] [126]. In the latest
BCI Kaggle competition, two of the top three winning teams used deep learning ap-
proaches [110]. A recent high-impact Nature paper reported use of a deep learning
architecture to successfully synthesise speech from neural decoding of spoken sen-
tences [11]. Commercially, companies such as Neuralink [80] are trying to bring
Artificial Intelligence(AI)-powered lightweight BCI devices.

In light of these developments, this project aims to assess the potential of deep
learning methods for the automatic classification of subjective music preference us-
ing EEG signals. The rest of this report is structured as follows: Chapter 2 outlines
the characteristics and acquisition of EEG signals and the neural basis of music lik-
ing, followed by a summary of deep learning approaches and a literature review
of its recent use in EEG classification. Chapter 3 details the experimental protocols
used to collect the EEG data used in this project, and the implementation of deep
learning architectures. Finally, the results are reported and evaluated in Chapter 4
and Chapter 5.
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Chapter 2

Background

2.1 EEG

2.1.1 Measuring Brain Activity with EEG

Electroencephalography (EEG), also known as brainwaves, is the most commonly
used non-invasive neuroimaging technique for measuring brain activity. Specifically,
EEG monitors voltage fluctuations produced by the summation of pyramidal neurons
in the outer cortical layers of the brain ( Figure 2.1). When neurons fire, neurotrans-
mitters (e.g. dopamine) are released across the synapse which causes a voltage
change across the cell membrane, generating a subtle electrical field called the post-
synaptic potential, which lasts tens to hundreds of milliseconds and are often on
the order of tens of µV when it reaches the scalp. This measured potential reflects
neuronal activity and can be used to study a wide range of brain processes.

The amplitude of EEG signals are measured by electrodes placed on the scalp. The
recording equipment is usually a cap or headset, and compared to other neuroimag-
ing methods, is more portable, accessible, and low-cost. The electrode locations are
highly correlated spatially, meaning the more electrodes, the more spatial informa-
tion captured. These locations are standardised by the 10-20 international system
or the intermediate 10% electrode locations, which divides the scalp into 10% and
20% intervals [73] (Figure 2.2). Existing EEG collection systems can have as many
as 64 electrodes (BCI 2000 system) and as few as 1 electrode (Mindware headset).

EEG signals have excellent temporal resolution: ionic currents change rapidly and
events occurring in milliseconds can be captured. On the other hand, EEG signals
suffer from poor spatial resolution. This is due to the limited number of electrodes,
and the fact that the electric fields generated by the brain are obstructed by tissues,
such as the skull, between the source and the sensor.

EEG signals typically contain several non-overlapping frequency bands, which re-
sult from oscillations of locally synchronised neuronal activity. This is referred to
as brain rhythms and are strongly correlated with distinct behavioural states [67].
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Chapter 2. Background 2.1. EEG

Figure 2.1: Left: Illustration of a pyramidal neuron with cell body and dendrites. Neu-
rons typically consist of a cell body and dendrites that connect to each other through
synapses. The neuron receives a signal from axons of another neuron across the synapse,
generating a potential difference (red minus signs). Pyramidal neurons are large neu-
rons present throughout the grey matter of the cortical layer and are always oriented
perpendicular to the cortical surface. This unique characteristic allows the stable de-
tection of their synchronised activity on the surface of the skull. Right: Illustration of
perpendicular pyramidal cells in the grey matter (grey line above white matter) gener-
ating a summation of potential difference which can be measured on the surface of the
skull. Images taken from [52]
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Figure 2.2: Standardised systems of EEG electrode locations. Left: International 10-20
System. Right: Intermediate 10% Electrode Positions (American Electroencephalogra-
phy Society). Lettering on electrodes are abbreviations of brain areas electrodes are
located over. For example, ’Fp’= pre-frontal, ’F’ = frontal, ’C’ = central, ’P’ = parietal,
’T’ = temporal, ’O’ = occipital. Images Courtesy of Creative Commons License [27] [26].

Table 2.1 and Figure 2.3 show the visualisation of different rhythms, denoted Delta,
Theta, Alpha, Beta, Gamma by increasing frequency ranges, and their associated
brain states.

Rhythm Frequency (Hz) Amplitude Brain State Location
Delta 0.5-4 High Deep sleep pattern Frontal and posterior
Theta 4-8 High Light sleep pattern Entorhinal cortex, hippocampus
Alpha 8-12 Medium Eyes closed, relaxed state Posterior regions
Beta 12-30 Low Active thinking Frontal
Gamma Above 30 Low Cross-modal sensory processing Somatosensory cortex

Table 2.1: EEG rhythm bands and corresponding characteristics.

Figure 2.3: Example visualisation of different brain rhythm frequencies. Figure adapted
from [52].

There are many applications for EEG. In clinical settings, EEG is used most often to
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study sleep patterns [1] and epilepsy [4]. Conditions linked to changes in electrical
brain activity, such as attention deficit hyperactivity disorder (ADHD) [14], disorders
of consciousness [34], and depth of anaesthesia [40], are also monitored to various
extents using EEG. In neuroscience and psychology research, EEG is widely used
as a tool for understanding the brain and its underlying functions. Finally, EEG is
widely used in Brain-Computer Interfaces (BCI), which allow communication chan-
nels to bypass the neural pathways of the brain so that brain activity can be directly
translated into directives that affect the user’s environment [88].

Various types of EEG signals are utilised in BCI applications. For example, P300
is an Event-Related Potential (ERP) that can be observed as a positive deflection in
waveform around 300ms after the presentation of a novel visual stimuli. It is a well-
characterised signal used often in BCI spellers for disabled patients [33]. Motor Im-
agery (MI) is a type of spontaneous EEG based on oscillatory somatosensory rhythms
(SMR), requiring the user to imagine the execution of specific physical movements
without external stimuli. MI is widely-used for BCI prosthetic control, and many
public datasets are used for BCI decoding and Kaggle competitions [110].

In brief, we can divide EEG-BCI into active or passive paradigms: those that re-
quire explicit time-locked stimulation and those that do not. In general, passive BCI
paradigms are challenging to train, due to the lower signal-to-noise ratio (SNR) and
larger inter-subject variation [84](see next section). However, with the popularity
of commercial EEG headsets, ease of use has become an important criteria for BCI
usability. As a result, passive BCI paradigms have gathered increasing interest for
healthy users in addition to disabled users, in applications such as device control,
user state monitoring, evaluation, training and education, gaming and entertain-
ment, cognitive improvement, safety, and security [13] [123] [114].

2.1.2 EEG Processing and Classification

On the most basic level, an EEG dataset consists of a 2D matrix of real values: chan-
nels and time. For example, a 32-channel EEG signal sampled at 256Hz over a 10
second time period would have the dimensions 32 × 2560. These discrete values
represent brain-generated potentials recorded on the scalp associated with specific
task conditions. This highly structured form makes EEG data suitable for machine
learning. Consequently, a number of traditional machine learning and pattern recog-
nition algorithms have been applied to EEG data. The traditional pipeline for EEG
processing typically involves preprocessing (band-pass filtering and spatial filters),
feature extraction, feature selection, and classification (Figure 2.4).

At the preprocessing step, low-pass/high-pass filtering and band-pass filtering is
first applied. Frequencies below 1Hz and above 50Hz are usually filtered out as they
do not contain useful EEG information. A band-pass filter can then filter the signal
into a frequency band of interest, for example the beta band. Spatial filters and
artifact removal algorithms may then be applied. For example, Independent Compo-
nent Analysis (ICA) is commonly used to remove artifacts, and Principal Component
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Figure 2.4: Overall process for EEG classification. Figure modified from [71]

Analysis (PCA) is commonly used reduce the dimensionality of the signals [72] [99].

Because of the high dimensional nature of EEG signals, feature extraction and
selection aim to represent raw EEG signals by a smaller number of relevant values,
which describe the task-relevant information contained in the signals. Three main
sources of information can be extracted from EEG signals:

• Spatial information: describes where the information the relevant informa-
tion comes from, focusing on specific brain regions. In practice, this would
mean selecting specific channels of interest.

• Spectral information: describes how the power in a frequency band varies.
In practice, this would mean calculating the power in some specific frequency
band.

• Temporal information: describes how signal values vary over time. In prac-
tice, this would mean using EEG signal values at different time points and
different time windows.

Passive EEG paradigms are based on oscillatory activity and therefore typically use
spatial and spectral information, whereas active EEG paradigms are based on ERP
and mostly use spatial and temporal information [58] [72] [71]. A feature vector
is formed from the feature extraction stage which feeds into a classifier. Classic
supervised learning methods such as Linear Discriminant Analysis (LDA), Support
Vector Machines (SVM), and decision trees are common classifiers[72][71].

A few characteristics of EEG data makes it especially challenging to process. First,
EEG has a low signal-to-noise ratio [21]. This can be due to both objective and
subjective factors. Major objective factors include the obstruction of the skull and
other tissues between cortex and scalp, environmental noise, and artifacts generated
by activity-specific noise and stimulation. Various noise reduction techniques have
therefore been developed to minimise the impact of these noise sources to better ex-
tract true brain activity from recorded signals. Subjective factors include the subjects
mental stage and level of fatigue. These factors may impact affective and subjective
tasks.

Second, EEG is a non-stationary signal [67] [35]. That is, its statistics vary across
time. As a results, a classifier trained on limited amount of user data temporally
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might generalise poorly to data recorded at a different time from the same individ-
ual. The is a great challenge for real-life applications of EEG classification, which
often need to work on limited amounts of data.

Finally, EEG data have high inter-subject variability. This is due to the physiolog-
ical differences between different individuals [88] [6] [8]. This can severely limit
the ability of classifiers to generalise across subjects, which is important to many
real-time applications of EEG classification.

2.2 Neural Substrate of Music Liking

The neural correlates of the subjective aesthetic appreciation of music has been stud-
ied by neuroscientists in the past two decades. Functional neuroimaging studies have
shown that music strongly affect emotional states [24] [50]. Listening to pleasur-
able music can modulate changes to the subcortical structures of the brain involved
in reward and emotions, including the ventral striatum, midbrain, amygdala, or-
bitofrontal cortex, and ventral medial prefrontal cortex [94][124]. The pleasant
emotional response to music can also induce regional cerebral blood flow changes,
giving rise to the phenomenon of ”chills” and ”shivers down the spine” when listen-
ing to liked music [22].

More recently, studies have begun to look at music perception and its induced
emotions in EEG brain activity. The perception of music is reported to induce a
significant increase of power in beta band over posterior brain regions when com-
pared to resting condition [79]. An increase in gamma band was observed in trained
musicians [20]. [98] reported that frontal brain EEG alpha power and asymmetric
activation pattern is closely related to valence and intensity of music emotion [10],
and [18] also reported changes in the alpha band modulated by emotional valence
intensity. The contrast of pleasant and unpleasant music is also associated with an
increase of frontal mid-line theta power [95].

Regarding the subjective evaluation of music, [38] and [83] found that higher fre-
quency bands, in particular the gamma band over the forebrain area, were the most
important for the decoding of music preference. Recently,[5] reported a biomarker
for the assessment of spontaneous aesthetic brain responses during music-listening
based on the concept of cross-frequency coupling (CFC) [55] and functional con-
nectivity between different areas of the brain [119]. They reported that the beta
and gamma oscillations recorded over the left prefrontal cortex, in particular the
electrode location AF3, are most important for estimating the subjective aesthetic
appreciation of a piece of music, and may reflect the inter-connectivity of the frontal
cortex with subcortical music-rewarding dopaminergic areas.

To assess the underlying changes in electrical brain activity in response to pre-
ferred music, we followed the approach taken by Adamos et al. [5], which has the
following characteristics:

• A passive listening paradigm is used [23]. That is, there is no task for the
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subject, similar to how a real-life music recommendation system would be im-
plemented.

• The spontaneous brain response of aesthetic appreciation to music is measured.
This is to avoid the active cognitive processing during music listening, so that
the signal measured reflects the pure response to music.

• Only the subjective liking/disliking is accounted for to avoid the limitations
posed by emotional polarisation in traditional valence-arousal model related
strategies [50] [8]. For example, listening to sad music can be classified as
negative emotions, but this does not indicate the music is undesirable to the
listener.

2.3 Deep Learning

Deep learning methods are a special case of representation learning, composed of
multiple layers stacked on top of each other, where each layer learns representations
from the previous layer. With recent advances, deep learning has become increas-
ingly popular for use in feature learning of biosignals in BCI applications, such as
EEG [74].

This section outlines three deep learning architectures commonly used for EEG
classification tasks: Convolutional Neural Networks, Recurrent Neural Networks,
and Deep Belief Networks.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are capable of processing data with grid-
like topology. A common example is images. Greyscale images are a single two-
dimensional array while coloured images consist of three two-dimensional arrays.
In CNNs each neuron applies the convolution to its input using an N two dimen-
sional array, called kernel or filter bank. This operation produces an output which is
referred to as feature map. For an input of a two-dimensional array, where I is the
input, and K is the two-dimensional kernel, this can be represented mathematically
as:

O(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(i, j) (2.1)

A CNN is typically composed of successive convolutional (filtering) and pooling
(subsampling) layers with a nonlinear activation functions applied before or after
pooling, followed by one or more fully connected layers. Common nonlinear ac-
tivation functions used are ReLU, which computes f(x) = max(0, x); Leaky ReLU,
which computes f(x) = max(ax, x); and Maxout, which is a generalisation of ReLU
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and leaky ReLU. The most popular pooling approach is max-pooling, which com-
putes the maximum of non-overlapping kernels. Like regular neural networks, CNNs
are trained using iterative optimisation with back-propagation algorithm, usually
stochastic gradient descent (SGD). An example of a CNN architecture is shown in
the Figure 2.5.

Figure 2.5: Example of CNN architecture used for document recognition [64]

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) take sequential information into account and
processes sequence of values. In its simplest form, this recurrence is represented by:

st = fW (st−1,x)

where st is the the state of the system at time t and represents the dynamics of the
inputs x up until time t, W are the weight matrices to be learned and the function f
describes the relationship between input x and the state st−1. Figure 2.3.2 visualises
how RNNs unfold in time, and the equation is below:

st = tanh (st−1 ∗W + xt ∗U)

ot = Ust
(2.2)

RNNs are trained using a variant of the back-propagation algorithm, known as
backpropagation through time (BPTT). The most common RNN is the Long Short-
Term Memory (LSTM) network [47]. An LSTM consists of four gates, the input
gate it, the forget gate ft, the output gate ot and the cell gate st. The input gate
decides the amount of information that is passed from the previous time step t−1 to
the current time step t. The forget gates decides the amount of information that is
”deleted” from one step to another. An example of an LSTM cell and the equations
for the cell is seen in Figure ?? and equation 2.3.
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2.3. DEEP LEARNING Chapter 2. Background

Figure 2.6: The recurrent procedure of the RNN model unfolding in time. For a specific
node in time range [1, t+1], the node at time t receives two inputs variables (xt denotes
input at time t and st-1 denotes the hidden state at time t− 1) and exports two variables
(output Ot and the hidden state st at time t). The input xt is fed to the cell st-1 at time
t and processed using the matrix U . The previous time steps are taken into account to
produce the output Ot using matrix V . The parameters U , V , and W are the same for
all time steps. Figure modified from [126].

Figure 2.7: Example of an LSTM cell containing four gates: input, output, cell, and
forget [47].

it = σ (st−1Wis + xtUxi + bi)

ft = σ (st−1Wfs + xtUxf + bf )

st = ftst−1 + it tanh (Uxsxt +Wshht−1 + bs)

ot = σ (st−1Wos + xtUxo + bo)

ht = ot tanh (st)

(2.3)

2.3.3 Deep Belief Networks

Deep Belief Networks (DBN) are neural networks consisting of a visible and hidden
layer composed of stacked Restricted Boltzmann Machines (RBMs).
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Figure 2.8: A 3-layer DBN composed of RBMs. In this illustration, there are two RBM
components with the hidden layer of the first RBM working as the visible layer of the
second RBM. The last hidden layer is the encoded representation [126].

DBNs are energy based models, which means that the probability distribution in
each layer is defined through an energy function. A basic assumption in RBMs is that
the neurons in the same layer are conditionally independent given the layer they are
connected to. The joint probability distribution between the visible and hidden layer
is defined as follows:

P (v, h) =
1

Z
exp(−E(v, h))

where Z =
∑

v,h e
−E(v,h) is a normalisation constant. Assuming a Gaussian RBM,

the energy function is defined as follows:

E(v, h) =
1

2σ2

∑
i

v2i −
1

σ2

(∑
i

civi +
∑
j

bjhj +
∑
i,j

viWi,jhj

)

Where c ∈ RD and b ∈ RK are biases for the visible and hidden layers respectively,
W ∈ RD×K are the weights between visible and hidden layer and σ is a hyperparam-
eter. To learn the probability distribution of the input data, RBMs are usually trained
according to a procedure called contrastive divergence learning. This learning pro-
cedure is based on a gradient ascent of the log-likelihood of the training data. DBNs
are trained greedily, meaning the bottom layer is trained first and its hyperparame-
ters are fixed before the next layer is trained.
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2.4 Related Works

2.4.1 Traditional Machine Learning Approaches

The current state-of-the-art decoding algorithms include filter bank common spatial
pattern (FBCSP)/ common spatial pattern (CSP) [56] [83], riemannian geometry
classifier [28], discrete wavelet transform (DWT) [77][37] [116], as well as tra-
ditional machine learning algorithms Support Vector Machines (SVMs) [70] [87]
[112], k-Nearest Neighbours (kNN) [38] [39], and Linear Discriminant Analysis
(LDA) [71].

Pan et al. [83] used Common Frequency Pattern, a spectral-based version of CSP,
for feature extraction and linear SVM for classification of binary music preference
(”like” and ”dislike”) using 2-channel frontal EEG signal from 12 subjects. They
achieved an average accuracy of 74.77% and through frequency band optimisation,
found the gamma band to be most important for EEG music preference tasks. Sim-
ilarly, Tseng et al.[112] classified music preference with an online device at 85.7%
accuracy rate using SVMs and features extracted using Fast Fourier Transform (FFT).

Lin et al. [70] used the power spectrum asymmetry index of EEG signals from 32-
channels as feature extraction and SVM as classifier to identify 4 classes of emotions
from music listening. They reached 82.29% accuracy with 26 subjects with the best
performance from alpha and beta bands. The same authors also used short-time
Fourier transform to extract power spectral density (PSD) over time and compared
two different schemes of SVM classifiers, multi-class SVM and hierarchical binary
SVMs. The study found that hierarchical binary SVMs outperformed one-step multi-
class SVMs by 10% [70].

However, simple Fourier transforms might not account for the non-stationary na-
ture of EEG signals. EEG classification using both the time and frequency domains
relies on the analysis of spectral power at specific time windows that span the en-
tire duration of the measurement period. Hadjidimitriou et al. [39] used three
different feature extraction methods in the time-frequency domain: spectrogram,
Hilbert-Huang spectrum, and Zhao-Atlas-Marks transform. Using SVMs and kNN to
classify liked or disliked music in 9 subjects, they found that kNNs performed the
best with 86.5% accuracy. The same authors refined the same study to account for
the degree of familiarity of the music listened to, and found that familiar and liked
music had the highest classification accuracy, at 91.02 ± 1.45% with kNN [38].

Moon et al. [76] used short-time Fourier transform (STFT) and asymmetry scores
in the time-frequency domain to classify preference of music videos in 4 classes.
They tested SVMs, LDA, and kNN as classifiers and also found that kNN performed
best, at 97.39%. To address inter-subject variability, [37] recently used flexible an-
alytic wavelet transform, a variant of DWT, to extract channel-specific information
in frequency sub-bands. Random forests and SVMs were used as classifiers on the
public Dataset For Emotion Analysis using Physiological Signals (DEAP), achieving
79.99%.
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Recently, Adamos et al.[5] identified EEG-specific biomarker for music liking in
the high-beta and low-gamma bands of the left prefrontal cortex (AF3 electrode
location) during passive listening. Hilbert transform, asymmetry index, and cross-
frequency coupling were used as a composite feature extractor, and regression Ex-
treme Learning Machines (ELM), a type of feedforward network, was used to predict
music liking on a scale of 1 to 4 across 14 subjects. In an updated work they pro-
posed an additional NeuroPicks system with non-linear dynamics VQ-scheme feature
extraction method on a per-subject basis [57]. Both methods were on an online mu-
sic recommendation BCI system. These serve as important proof-of-concept studies
on interfacing commercial EEG devices with a music recommendation system based
on subjective liking in real-time.

Figure 2.9: Processing flowchart of a real-time music recommendation system BCI from
Adamos et al. [57].

Although FBCSP and riemannian geometry classifiers are the current state-of-the-
art for non-DL EEG studies, these have yet to be implemented for the classification
of emotions and preference in music listening.
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2.4.2 Deep Learning Approaches

A major limitation in using deep learning for EEG classification tasks is that most
EEG datasets are limited, making such data less adequate for training large-scale
networks with millions of parameters. As it is often demonstrated, the advantages
of deep neural networks over traditional machine-learning techniques become more
apparent when the dataset size becomes very large [125]. Nonetheless, shallow deep
learning models with reduced parameters have shown promise for EEG classification
in the literature.

The most popular deep learning approach used by EEG classification tasks is CNN
[91][29]. CNNs are a popular choice for EEG classification tasks as it is an end-to-
end paradigm — a CNN combines feature extraction and classification in one step,
bypassing the traditionally laborious EEG feature extraction process. In addition,
many papers and reviews have reported that CNNs performed just as well, if not
better, on raw data than on preprocessed data, increasing the appeal of using CNNs
for real-time applications [97] [41] [78] [91]. As EEG signals are highly dynamic,
non-linear time series data, RNNs, in particular LSTMs, also appear to be ideal for
decoding the temporal characteristics and sequential nature of EEG data. However,
recent works have also shown that CNNs are capable of learning hierarchical features
in time series data [16] [48] [42].

Figure 2.10: Number of EEG classification papers and the deep learning architectures
employed, as systematically reviewed by Roy et al. [91]. AE = auto-encoder, FC =
fully-connected, GAN = generative adversarial network, MLP = multi-layer perceptron.

As [29] reviewed in recent EEG studies (Figure 2.14), the input into CNNs and
RNNs can be either raw or normalised time series signals values, or images derived
from spectrograms or 2D/3D grids. CNNs have been used in several papers for EEG-
based classification tasks, such as sleep-stage scoring [113][102], speech decoding
[11], visualising dream imagery [48], emotion state estimation [121] [86] [111]
[93] [68], cognitive load classification [17] [45] [54] [41] [9], biometric identifica-
tion [115] [81], classifying and diagnosing neurological diseases [51] [3] [2] [12]
[96] [82] [92], BCI applications such as P300 or motor imagery signals [63][31]
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[97] [78] [109], and the classification of rhythm and tempo perception in music
[107] [106] [104] [122]. RNNs have also been used for user-identification [108],
emotion recognition [7][69], attention monitoring [43], cognitive load classifica-
tion [61][45], sleep [62], and prediction of epileptic seizures [113] (For a more
comprehensive summary of applications, see [91] [29]).

To the best of this author’s knowledge, deep learning has not been used for the
classification of liking preference in music listening. A few research groups, how-
ever, have worked on the classification of music-related events. Stober et al. used
shallow 1 or 2 layer CNNs to classify the perception of 13 different types of rhythms,
achieving mean accuracy of 24.4% [106]. In another study, they used convolutional
auto-encoders (CAE) to classify audio events [107]. To address the limited EEG
data, cross-trial encoding was used to attempt to capture invariance between trials
and subjects. The group also established the OpenMIIR dataset [105], which was
used to measure their model performances. Yu et al. [122] used a DenseNet as fea-
ture extractor for the classification of audio events in a hybrid model combined with
audio data. For an 8-class problem their accuracy was 60% using EEG data only, and
81% when combined with audio data.

Figure 2.11: Illustration of general architecture from [31], inspired by [97]

Lawhern et al. [63] developed a CNN model, EEGNet, which classifies EEG signals
for different BCI tasks such as P300, movement-related cortical potentials (MRCP),
error-related negativity response (ERN), and sensorimotor rhythms (SMR). Their
network used depthwise and separable convolutions, inspired by FBCSP, to learn
spatial and temporal patterns in EEG time series. The performance was comparable
to FBCSP, but the results were prone to inter-subject variability. Nonetheless, their
results showed that a relatively simple CNN architecture was sufficient to generalise
across different BCI tasks.

Schirrmeister et al. [97] investigated the design choices of CNN architectures for
decoding motor imagery movements from raw EEG data. They presented two mod-
els, a DeepConvNet and a ShallowConvNet model. Using 1D temporal convolution in
the first layer, and filters in the second layer that operate spatially in 2D across the
learned temporal filters, batch normalisation and exponential linear units (ELU) ac-
tivation, the authors obtained accuracies of 71.90% and 70.10% (4 classes) on BCI
dataset IVa for DeepConvNet and ShallowConvNet, respectively. They found that
the 5-layer DeepConvNet performed best on raw data and statistically better than
FBCSP. The approach of using spatial and temporal filters was also used in [78].

Alhagry et al. [7] extracted temporal features using an RNN for classification on
the 32-subject DEAP dataset. Their RNN consists of two LSTM layers, a dropout
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layer, and a fully-connected (FC) layer, achieving 85.65% accuracy. Sun et al. [108]
used 1D convolutional LSTM for user-identification with 4 layers of convolution fol-
lowed by an FC layer, and 2 layers of LSTM followed by another FC layer. With a
public dataset of 109 subjects the authors were able to obtain high accuracies using
only 16 channel normalised EEG data. However, user-identification is a task that
only needs to be applied on a per-subject basis, thus less challenging to train as it
does not account for the high inter-subject variability of EEG signals.

Salama et al. [93] and Wei et al. [118] used 3D CNNs for emotion recogni-
tion on DEAP dataset and seizure detection, respectively. [93] directly transformed
normalised time series data windows into 3D inputs into a 6-layer CNN, achieving
87.44% for 2 classes. [118] transformed raw EEG data into 2D images, then fused
into 3D images according to the adjacent degree of electrodes. This was then fed
into a 4-layer CNN, and a 90% accuracy was achieved for 3 classes. However, [118]
had small number of subjects (13).

Aoe et al. [12] used raw resting-state 106-channel magnetoencephalography
(MEG) signals, which measures magnetic fields of brain activity instead of electric
fields, to classify 3 different neurological diseases using MNet. Using large kernels in
the first convolution to learn global features in the temporal and spatial domain and
FFT-computed power spectrum of the frequency bands as additional input into the
FC layer, the authors achieved an accuracy of 70.7% ±10.6.

Figure 2.12: Illustration of architecture from [12]

Although using spectral representations such as mel-spectrograms as input into a
CNN is commonly used for audio speech recognition tasks [36] [66] [127] [15], this
is an interesting and relatively novel method for EEG signal classification tasks. Qiao
et al. [86] used CNNs for emotion valence recognition on the DEAP dataset. On pre-
processed EEG data, STFT was used to estimate the PSD of relevant frequency bands
in manually selected critical channels. The resulting 3-channel coloured 2D images
were then inputted into a two-layer convolution network, achieving an accuracy of
87.27%. [51] used 2D spectral representations obtained by computing windowed
periodograms. The grey-scale 2-channel images were inputted into a 1 layer CNN
with max-pooling to predict dementia stages in patients. [92] used stacked multi-
channel spectrograms generated from preprocessed EEG data as input into a 4-layer
CNN or RNN, treating the task as an image or audio classification problem.
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Bashivan et al. [17] transformed raw EEG activities into a sequence of topology-
preserving multi-spectral images and used as input into a recurrent-CNN to classify
cognitive load. FFT-computed spectrogram representations for relevant frequency
bands were computed. 3D electrode locations over the scalp were then mapped
into a 2D image using Azimuthal Equidistant Projection (AEP) to preserve relative
distance between the electrodes. The images were stacked together to form an im-
age with three colour channels and used as input into a CNN to learn the spatial
representation of the data, then through an LSTM layer to learn the temporal repre-
sentation of the data. A test error of 8.89% was achieved for the classification of 4
classes.

Figure 2.13: Illustration of approach from [17]

Similarly, Jiao et al. [54] transformed 64-channel raw EEG data into multi-
spectral image series via topology preserving 2D or 3D projections using FFT and
AEP for input into a 4-layer recurrent CNN network. They observed that for multi-
channel input, the classification performance decreased when the electrode locations
were randomly shuffled, indicating that spatial information between electrodes con-
tain information that helps decoding. Kuanar et al. [61] used the same general
architecture but with 22 subjects and 9-layers of convolution. They evaluated both
LSTM and bidirectional-LSTM cells, achieving an average accuracy of 92.5% across
the 4 classes.

However, it should be noted that the mental load experiments were ERP-based in
the aforementioned studies [17] [54] [61], which is considered a easier classifica-
tion task relative to passive BCI paradigms. Furthermore, the transformation of EEG
channels into multiple topology preserving images could be computationally expen-
sive to implement in real-time. [61] was also done on a per-subject basis, essentially
avoiding the challenge of inter-subject variability.

DBNs are capable of achieving high accuracies on public BCI datasets, but the
drawback is that the features often need to be calculated and transformed prior to
input into the network [128] [29]. In particular, DBNs are said to be most effective
for PSD features and frequency domain signals. The DBN network by Xu et al. [120]
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uses a 3-layer DBN and takes PSD features as input has the highest classification
accuray of 89% on the DEAP dataset. Plis et al. [85] showed that adding several
RBM layers to a DBN with supervised pre-training results in networks can achieve
considerable accuracy increases compared to other classifiers. Ren and Wu [89]
used a convolutional DBN on EEG data processed with PCA and Fourier-transformed
signals. They achieved an accuracy of 87.33% on public BCI datasets. Hajinoroozi
et al. [41] and Jiao et al.[54] both used hybrid architectures made of channel-wise
CNNs and RBMs.

Figure 2.14: Recommendation of deep learning architectures for different EEG classifi-
cation tasks from [29]
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Methods

3.1 Experimental Data

3.1.1 Participants

A total of 22 healthy participants (5 females, 17 males; average age 28.8) were re-
cruited from Imperial College London across the duration of this project. Participants
were master’s students, PhD students, or researchers who listened to music on a daily
basis. Prior to the experiment session, all participants were asked to register and fill
in demographic information on the myBrainTunes project website hosted on the Im-
perial Department of Computing intranet (https://mybraintunes.doc.ic.ac.uk), and
to read through ethics declaration and sign an informed consent form. They were
also asked if they had consumed caffeine prior to the experiment, as this can some-
times affect EEG activity [30].

3.1.2 Data Acquisition

Prior to the experiment session, participants were asked to listen to excerpts from
60 songs and assigned a numerical rating from 0 to 5 based on their preference (0:
do not like at all; 1: do not like; 2: undecided; 3: like 4: like very much; 5: one of
my favourite songs). They were also asked if they were familiar with the song. The
songs were taken from most popular tracks on Spotify of the music genres pop, rock,
electronic, and ballads. (A list of musical excerpts used is provided in the Appendix)

The EEG data was acquired with the Emotiv Epoc+ wireless headset (Emotiv
Systems, Inc., San Francisco, CA). The headset includes 14 active saline-based elec-
trodes referenced to the left and right mastoid, with electrode placements AF3, F7,
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, as shown in Figure 3.2.
Signals were digitised at the sampling frequency of 256 Hz, and band-pass filtered
to an effective bandwidth of 0.16 — 45 Hz. All recording sessions were carried out
in a professional studio environment with dim lights to avoid visual distractions.
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Figure 3.1: Screenshot of the control panel for the website mybraintunes.doc.ic.ac.uk.
Participants were asked to fill out consent form, song ratings, and questionnaire.

Open source software OpenSesame [75] and Emotiv’s EEG reocrding software (Test-
bench) were used to synchronise and automate the visual and audio setup of the
experiment. Participants listened to music excerpts through in-ear earphones played
through Genelec (Genelec, Finland) audio system.

Figure 3.2: The Emotiv Epoc 14+ and the electrode locations in 10-20 system. Images
taken from Emotiv Website [32].

3.1.3 Experiment

Participants were told to sit comfortably in a chair at a natural distance from the
screen. As no EEG electrode caps were used, special care was taken to ensure elec-
trodes were in the right positions for every head shape. Subjects were told to avoid
excessive head movements, swallowing, minimise blinking, and to keep their eyes
open and focus on the dot on the screen during the recording session. This is to
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reduce muscular artifacts from movements and ocular artifacts from eyeblinks. As
the electrodes are referenced to the mastoid (bone behind ear), movements such
as jaw-clenching and swallowing would disrupt signal recordings. A test audio was
then played so that the participant may adjust the volume of music to their com-
fort. As we wanted to measure the passive brain response of listening to liked music,
participants were also told to enjoy the music experience during the experiment.

The recording sessions were divided into two 20 minute sessions, where each
session contained excerpts from 30 songs that the participant had previously rated
in the questionnaire. The music excerpts were played in random order. A resting
period of 10 seconds was recorded at the beginning of each session to establish a
reference for resting state baseline activity. During the recording session, a green
or red dot was displayed onscreen for the participant to fixate their eyes on and to
indicate the onset of music playing. A red dot indicates no music is playing and
a green dot, preceded by a countdown, indicates music playing. Participants were
given 10 second resting intervals in between 30 seconds of music playing (see Figure
3.3). The total number of trials was equal the total number of excerpts, i.e. 60 per
subject so 22 × 60 = 1320 trials in total. Only the relevant 30 seconds of music
listening was used for training.

Figure 3.3: Experimental design for one session. There were two sessions and 60 trials
in total for every subject.

3.1.4 Preprocessing

The recorded signals were digitised at 256 samples/s and band-pass filtered to 0.16
- 45 Hz. Independent Component Analysis (ICA) [99] was then used to clean the
EEG data and remove artifacts. For each continuously recorded dataset, components
that were associated with artifact activity from eyes, muscle and cardiac interference
were identified and zeroed, and the estimated mixing matrix was used to reconstruct
the multi-channel signal from the rest of ICs.

A filter bank was also applied to filter the signals from each sensor x(t) into rel-
evant frequency bands of standard brain rhythms. To increase the frequency reso-
lution, the beta rhythm band was divided into betalow and betahigh. The frequency
ranges were thus, Delta: 1-4Hz, Theta: 4-8Hz, Alpha: 8-13Hz, Betalow: 13-21Hz,
Betahigh: 21-30Hz, Gamma: 30-45Hz.
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Figure 3.4: Example of raw data recorded from 14-channels from a single trial from one
subject.

Additionally, the energy content envelope of the frequency bands were calculated
by means of Hilbert transform, which transforms values into the frequency domain
by computing a phase shift of 90 degrees to every Fourier component of a function
u(t) of real values. The envelope of the filtered activity Arhythm(t) represents the
momentary strength of the associated oscillatory activity, and its relative contribu-
tion is derived by normalising with the total signal strength (summed from all brain
rhythms).

As such, the implementation that follows makes use of three sets of data: the un-
processed raw data, the ICA-cleaned and filtered frequency bands (referred to in the
following as filtered), and the envelope of the filtered frequency bands representing
their relative strength (envelope). Finally, all trials were additionally normalised to
zero mean and range [-1, 1].

3.2 Data Augmentation

Deep learning models require large amounts of data to learn discriminative features
and prevent overfitting. In computer vision tasks, methods such as flipping, stretch-
ing, rotating, and adding noise are common ways to enlarge the dataset. For EEG
time series data, a common strategy is to use overlapping crops generated by slid-
ing a fixed-sized window over each EEG trial, and has been shown to increase CNN
classification performance [97]. Formally, given an original trial X i ∈ RE·T with E
electrodes and T timesteps, the sliding window generates a set of crops with crop
size T ′ as timeslices of a given trial i:
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Ci =
{
X i

[1,E],[t,t+T ′]|t ∈ [1, T − T ′]
}

(3.1)

Where all T − T ′ crops are then used as new training data examples and receives
the same label yi as the original trial.

This cropping strategy aims to force the model into learning features that are
present in all crops of the trial, as the model can no longer rely on the global tempo-
ral structures between the original trials. In this project, a sliding window frame size
of 1280 sample points was used, i.e. 5 seconds given sampling frequency of 256Hz.
The overlap between trials was 50% of the frame size, i.e. 2.5 seconds. This was cho-
sen as previous works have determined that the impact of music-related emotional
events happen on the scale of milliseconds and overlapping frame sizes between 3
to 5 seconds yielded the best accuracy for classification tasks [38] [39]. In total,
this yields 5 new training samples per trial, increasing the training set by a factor
of 5. Frame sizes of 1 second, 3 seconds, and 10 seconds were also tested, but did
not yield a significant difference. Additionally, Gaussian noise was also added to the
input data to increase the robustness of training.

Figure 3.5: Illustration of cropped windowing approach. Figure modified from [91]

3.3 Architecture Implementation

3.3.1 Baseline Model

To benchmark the proposed architectures, a baseline model using feature extraction
and a classifier. The benchmark model implementation follows [39] [38] closely,
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as both are relevant works on the classification of music preference based on time-
frequency analysis. In these works data collected from nine subjects during music
listening with self-reported ratings of liking on a scale of 1-4 using features extracted
from the beta and gamma bands using three different time-frequency distributions
(spectrograms, Hilbert-Huang spectrum, Zhao-Atlas-Marks transform). The feature
vectors were then classified into two classes, ”like” and ”dislike”, using SVMs and
NN.

Two differences should be noted on the implementation of the original paper and
this implementation: [39] used an ”active” listening paradigm in their experiment,
meaning participants were asked to rate the music during the experiment, as op-
posed to listeing to the music passively as in this project. In addition, [38] only used
binary classes for their classifier (like and dislike), whereas the goal of the model
in this project is to predict the numerical rating of music preference in subjects (6
classes).

For this model, spectrograms were used as the time-frequency distribution (TFD).
A TFD constitutes a two-dimensional spectral representation of a signal in the time
and frequency domains. A spectrogram is calculated using the short-time Fourier
transform (STFT), a type of linear TF representation. STFT involves pre-windowing
a signal x(τ) around a time instant t and the calculating the Fourier transform for
each t. The square modulus of the STFT then defines the spectrogram, which repre-
sents the energy distribution of the signal in the TF plane:

SPGx(t, f) =

∣∣∣∣∫ +∞

−∞
x(τ)h∗(τ − t)e−j2πfτdτ

∣∣∣∣2 (3.2)

where h ∗ (τ − t) represents the short-time analysis window, (* denoting the com-
plex conjugate). Spectrograms were generated using the Scipy function
scipy.signal.spectrogram, using a non-overlapping Hamming window function.

Feature extraction was carried out using the method described in [38]. Based on
the concept of event-related desynchronisation (EDS) and synchronisation (ERS),
event-related activity can be seen as a proportional change of spectral activity in
relation to a reference period. Thus after computing the TFD, from recording chan-
nel i and experimental trial j, feature F is computed in a time window W n in the
frequency band fb

F fb,wn =
Afb,wn −Rfb

Rfb
(3.3)

Where A is the average amplitude of a spectrogram of a given freqeuncy and
window, and R is the average amplitude of a spectrogram from a resting trial. Sub-
sequently, the feature vector is constructed as:

FV fb,wn

j =
{
F fb,wn

j,1 , . . . , F fb,wn

j,i , . . . , F fb,wn

j,Nc

}
where i denotes the ith channel and N c is the total number of channels.
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Figure 3.6: Spectrogram visualisation of the betahigh frequency band between 21-30Hz
for one trial

As the beta and gamma frequency bands were shown to be most important for
music liking tasks [39] [5] [83] [70], the final feature vector was formed by con-
catenating feature vectors of these two bands only, giving:

FV wn
j =

{
FV beta,wn

j , FV gamma,wn

j

}

The total number of FV s computed is 30−0.5lw
0.5lw

, where lw is the length of the win-
dow, 0.5 indicates a 50% overlap between window frames, and 30 is the total dura-
tion of a single trial in seconds. So for a window frame length of 1280 sample points
(5 seconds), 11 FV sets were computed for every 30 second trial.

Each of the FV sets were fed into two different classifiers, kNN and SVM. These
were implemented using the Python sklearn library. For kNN, the euclidian distance
was used for the distance metric and the number of nearest neighbours k was set to 4
[38]. For SVM, the Gaussian radial basis function kernel was used, and hyperparam-
eters were tuned using GridSearchCV with parameter values C = {0.1, 1, 10, 100},
γ = {0.001, 0.1, 1, 50}. For both classifiers, the entire dataset was used for training
and testing using stratified 5-fold cross-validation.
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3.3.2 Time Series as Input

As reviewed in Section 2.4.2 , CNNs are the most commonly used architectures in
the DL-EEG literature and have shown success in learning EEG representations in
various tasks. Three types of CNN architectures are presented which takes time
series signal values as input: a 1D CNN, a 2D CNN, and DenseNet. As many studies
reported the success of using raw data as input into CNNs [91], all architectures were
experimented with using 3 types of inputs: raw, filtered, and envelope data, referred
to in Section 3.1.4. All models were created using Pytorch with GPU acceleration.

1D Convolutional Network

Architecture As time series data have strong 1D convolution structure [65], an
architecture which performs successive convolutions in the time domain and the
spatial domain (electrode channels) was first created.

The input shape is E × T , where E is electrode channels and T is time points in a
window. 1D convolutions with a kernel size of 5 and a stride of 3 are used, followed
by a ReLU activation function. Batch normalisation is then applied to reduce co-
variate shift in intermediate representations and improve robustness, and was shown
to improve performance for DL-EEG studies [97] [53].

The number of filters is kept constant at 14, the number of electrode channels. In
the fifth layer dropout [103] is used with a deactivation probability of 0.25 to reduce
overfitting. Hence for every layer 14 feature maps are produced. This ensemble of
operations is repeated 5 times. The axes are then swapped and 1D convolutions with
a kernel size of 3 are applied to learn the representations in the spatial dimension.
This is repeated for 2 layers, with a stride of 2 followed by a stride of 1, both followed
by ReLU non-linearity and batch normalisation. Finally, the output is flattened and
fed into 2 fully-connected layers. ReLU and dropout at 0.25 were again used, and
the output dimension with softmax activation is 6, the number of classes. Finally,
in order to recover label from the output softmax vector, the argmax was taken,
returning the index with the largest entry as the prediction. The full architecture is
shown in Table 3.1.

A number of different configurations in kernel size and stride, as well as win-
dow sizes (discussed in Section 3.2) were tested at 768, 1280, and 2560. As there
is a large number of tunable parameter, exploring all possible formations can be
extremely time consuming and no formal hyperparameter search was used.
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Layer Operation Stride Output Shape Parameters

Input E × T
1 14 × Conv1D (5) 3 14 × 426 994

ReLU - 14 × 426 -
BatchNorm - 14 × 426 56

2 14 × Conv1D (5) 3 14 × 141 994
ReLU - 14 × 141 -
BatchNorm - 14 × 141 56

3 14 × Conv1D (5) 3 14 × 46 994
ReLU - 14 × 46 -
BatchNorm - 14 × 46 56

4 14 × Conv1D (5) 3 14 × 14 994
ReLU - 14 × 14 -
BatchNorm - 14 × 14 56

5 14 × Conv1D (5) 3 14 × 4 994
ReLU - 14 × 4 -
BatchNorm - 14 × 4 56
Dropout (0.25) - 14 × 4 -

6 Swap axes - 4 × 14 -
4 × Conv1D (3) 2 4 × 6 52
ReLU - 4 × 6 -
BatchNorm - 4 × 6 16

7 4 × Conv1D (3) 1 4 × 4 52
ReLU - 4 × 4 -
BatchNorm - 4 × 4 16

8 Flatten - 16 -
FC - 9 144
ReLU - 9 -
Dropout (0.25) - 9 -

9 Softmax - K 60
Total 5,590

Table 3.1: Proposed 1D CNN architecture. E is number of electrodes, T is number of
time points, and K is number of classes. In this table E = 14, T = 1280 (3 seconds), K
= 6. FC = Fully-Connected.
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Training Training was carried out by optimising the cross-entropy loss function
L(ŷ, y) =

∑
i yi log ŷi for multiclass classification and binary cross-entropy for binary

classification. Adam, a variant of the mini-batch stochastic gradient descent algo-
rithm, was used as the optimiser with an initial learning rate of 10−3 and decay rate
of first and second moments of 0.9 and 0.999 respectively [59]. Adam has been
shown to achieve fast convergence rates when used for CNN training and is the most
popular choice of optimiser in DL-EEG studies [91]. The batch size was set to 32.
The training ran for 100 epochs and was check-pointed and monitored by validation
loss.

The training and validation sets were split into 80% and 20% stratified folds using
StratifiedShuffleSplit in the sklearn library, so that each class is represented
equally in training and validation. In addition, to address class imbalance, the loss
for each class was weighted inversely proportionally to the probability of its label
being chosen.

The model was trained to predict on the 6 classes of preference detailed in Sec-
tion 3.1.2, or binary classifications of ”like” or ”dislike”, as some previous works
have done [38] [83]. To convert to binary classes, Labels 0 and 1 were converted
to ”dislike”, labels 4 and 5 were converted to ”like”, and labels 2 and 3 were dis-
carded as they were intermediate responses. Synthetic minority over-sampling tech-
nique (SMOTE) [25] was then used to oversample the binary classes and balance
the dataset. This was implemented using the imblearn library in Python.

The input was split into overlapping windowed frames as a means of data aug-
mentation, as described in Section 3.2, for all 3 input datasets raw, filtered, and
envelope. None-overlapping frames of sizes of 768, 1280, 2560 were also used for
comparison, but no differences was found. For filtered and envelope data, a sepa-
rate network was trained for every band of frequency: delta, theta, alpha, betalow,
betahigh, gamma. The frequency band with the best performance was chosen for the
final model. The training and validation loss over 100 epochs is shown in Figure 3.7.
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Figure 3.7: Training and testing loss for 1D CNN over 100 epochs for multiclass classi-
fication. A pattern of overfitting can be seen. Note the loss axis scale range is very close
together in value for the purpose of visualisation.
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2D Convolutional Network

Architecture An architecture using 2D convolutions was created based on the
model described in [12] (Figure 2.12) and detailed in Table 3.2. The architecture
uses a large kernel across the total number of channels in the first layer to learn
global features in the spatial and temporal domain. This is similar to the use of a
spatial filter in traditional EEG algorithms such as FBCSP, an approach also adopted
by the architectures in [63] [97] [78] [31]. The first layer extracts spatial features
with 32 filter kernels of 14 × 64 (for 14 electrode channels), and the second layer
extracts temporal features with 64 filter kernels of 1 × 16. The stride is (1,2) for
both layers, and an additional max-pooling operation is carried out after the second
convolutional layer.

After the first two layers, the data is then treated like an image in the time and
frequency domains by swapping axes, followed by 6 stacked convolutional layers
with decreasing size and increasing number of filter kernels in deeper layers. This is
similar to the architectures of popular ImageNet CNNs such as VGGNet and AlexNet
[60] [100]. The 3rd and 4th layer each have 14 filters kernels of size 8× 8 and stride
(1,1). The 5th and 6th layers have 28 filters of size 1 × 4 with stride (1,1). The next
two layers extract 28 filters of size 1 × 2 and stride (1,2). Max-pooling is applied
every two layers and ReLU is used as the activation function in all layers. Finally, the
fully-connected layer connects to 560 neurons and outputs to the softmax function
to get the probability of each label.

As the amount of data in this project is limited, and the original architecture was
used to accommodate EEG data with a larger number of channels and subjects, the
number of layers is reduced and the number of filters is adjusted and kept at 28
for the successive layers to reduce the complexity and number of parameters in the
network. To further prevent overfitting, Dropout [46] with a probability of 0.5 is
used in all layers. Dropout regularisation has proved to be an effective method for
reducing the overfitting in deep neural networks with millions of parameters [60]
and in neuroimaging applications [85]. Batch normalisation is used in the fully-
connected layers.
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Layer Operation Stride Output Shape Parameters

Input E × T
1 Unsqueeze 1 × 14 × 1280

32 × Conv2D (14 × 64) (1,2) 32 × 1 × 609 28,704
ReLU - 32 × 1 × 609 -
Dropout(0.5) - 32 × 1 × 609 -

2 64 × Conv2D (1 × 16) (1,2) 64 × 1 × 297 32,832
ReLU - 64 × 1 × 297 -
MaxPool2D (1 × 2) (1,2) 64 × 1 × 148 -
Dropout (0.5) - 64 × 1 × 148 -

3 Swap axes 1 × 64 × 148 -
14 × Conv2D (8 × 8) (1,1) 14 × 57 × 141 910
ReLU - 14 × 57 × 141 -
Dropout(0.5) - 14 × 57 × 141 -

4 14 × Conv2D (8 × 8) (1,1) 14 × 10 × 134 12,558
ReLU - 14 × 10 × 134 -
MaxPool2D (5 × 3) (5,3) 14 × 10 × 44 -
Dropout(0.5) - 14 × 10 × 44 -

5 28 × Conv2D (1 × 4) (1,1) 28 × 10 × 41 1,596
ReLU - 28 × 10 × 41 -
Dropout (0.5) - 28 × 10 × 41 -

6 28 × Conv2D (1 × 4) (1,1) 28 × 10 × 38 1,596
ReLU - 28 × 10 × 38 -
MaxPool2D(1 × 2) (1,2) 28 × 10 × 19 -
Dropout (0.5) - 28 × 10 × 19 -

7 28 × Conv2D (1 × 2) (1,2) 28 × 10 × 9 1,596
ReLU - 28 × 10 × 9 -
Dropout (0.5) - 28 × 10 × 9 -

8 28 × Conv2D (1 × 2) (1,2) 28 × 10 × 4 1,596
ReLU - 28 × 10 × 4 -
MaxPool2D(1 × 2) (1,2) 28 × 10 × 2 -
Dropout (0.5) - 28 × 10 × 2 -

9 Flatten - 560 -
FC - 560 314,160
ReLU - 560 -
BatchNorm - 560 2,240
Dropout (0.5) - 560 -

10 Softmax - K 3,366
Total 401,154

Table 3.2: Proposed 2D CNN architecture. E is number of electrodes, T is number of
time points, and K is number of classes. In this table E = 14, T = 1280 (3 seconds), K
= 6. FC = Fully-Connected.
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Training The model was trained using the same parameters as detailed for the 1D
CNN previously. Additionally, L2 regularisation of weight decay at 0.0005 was also
used for the training of the network to reduce overfitting. Training and validation
loss over 100 epochs is seen in Figure 3.8. The loss did not decrease over the epochs.

Figure 3.8: Training and test loss for 2D CNN over 100 epochs for binary classifica-
tion. Note the loss axis scale range is very close together in value for the purpose of
visualisation.
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DenseNet

The last architecture is an implementation of Dense Convolutional Network (DenseNet)
[49]. DenseNets contain layers which connect to every other layer in a feedforward
fashion. For each layer, the feature maps of all preceding layers are used as inputs,
and its own feature maps are used as inputs into all subsequent layers. Similar
to ResNet [44], DenseNet encourages information flow through all layers in the
network, but instead of through summation, DenseNet combines features by con-
canetating them. DenseNets have several advantages: they alleviate the vanishing-
gradient problem, strengthen feature propagation, encourage feature reuse, and sub-
stantially reduce the number of parameters. Given the limitation of data in this
project, a network with reduced parameters is advantageous. DenseNet has also
been previously used by [122] for EEG classification.

The implementation is based on the code and models given in the original paper
[49]. The size of the convolutions are similar to the 1D CNN described before,
where convolutions are done on the time domain first, then on the spatial domain.
The network takes in 1×E × T input where E is electrode channels and T is sample
points in time, as before. The growth rate is set to 4, the reduction value in the
bottleneck convolution layers is set to 0.5, and number of layers in each block is set
to 5. The first convolution has a kernel size of 1 × 5 and a stride of 1 × 3. Each
dense block contains the sequence of operations BatchNorm-ReLU-Conv, where the
kernel size is 1 × 5 and the stride is 1. The dense block is followed by the transition
layer consisting of a BatchNorm-ReLU-Conv with size 1 × 1 and stride 1, followed by
an average-pool of 1 × 2. In total there were 3 dense blocks followed by transition
layers.

The output of the DenseNet blocks is then put through 2 extra convolutional layers
for the network to learn representations in the spatial domain. Both layers are put
through the BatchNorm-ReLU-Conv sequence, as in the dense blocks, with a kernel
size of 3 × 1 and stride 2. This is followed by an average-pool of 1 × 3. Finally,
a fully-connected layer with 32 neurons is followed by softmax to give the final
classification.

Figure 3.9: DenseNet with three dense blocks. The layers between two adjacent blocks
are referred to as transition layers and change feature map sizes via convolution and
pooling. [49]
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Layer Operation Stride Output Shape

Input E × T
Unsqueeze 1× E × T

Convolution BN-ReLU-Conv(1 × 5) (1,3) 8 × 14 × 426
Pool MaxPool(1 × 2) (1,2) 8 × 14 × 213

Dense Block 1
[

BN-ReLU-Conv(1× 1)
BN-ReLU-Conv(1× 5)

]
× 4 (1,3) 4 × 14 × 213

Transition Layer 1 BN-ReLU-Conv(1 × 1) (1,1) 4 × 14 × 213
AvgPool(1 × 2) (1,2) 2 × 14 × 106

Dense Block 2
[

BN-ReLU-Conv(1× 1)
BN-ReLU-Conv(1× 5)

]
× 11 (1,3) 2 × 14 × 106

Transition Layer 2 BN-ReLU-Conv(1 × 1) (1,1) 2 × 14 × 106
AvgPool(1 × 2) (1,2) 2 × 14 × 53

Dense Block 3
[

BN-ReLU-Conv(1× 1)
BN-ReLU-Conv(1× 5)

]
× 12 (1,3) 2 × 14 × 53

Convolution BN-ReLU-Conv(3 × 1) (2,1) 2 × 6 × 53
Convolution BN-ReLU-Conv(3 × 1) (2,1) 2 × 2 × 53
Classification AvgPool(2 × 2) (1,2) 2 × 1 × 26

32D fully-connected, softmax

Table 3.3: Modified DenseNet implementation. E is number of electrodes, T is number
of time points, and K is number of classes. In this table E = 14, T = 1280 (3 seconds),
K = 6. BN = Batch Normalisation.

Figure 3.10: A 5-layer dense block with a growth rate of k = 4. Each layer takes all
preceding feature maps as input. [49]
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Training The training parameters are the same as described before, with the ex-
ception that stochastic gradient descent (SGD) was used instead of Adam. Following
the original paper [49], a weight decay of 10−4 and a Nesterov momentum of 0.9 was
used. The dropout rate was set to 0.2. Overlapping frame sizes of 1280 and 2560
were tested. DenseNets with 3 or 5 dense blocks were also tested, but no difference
was found. The training and validation loss over 100 epochs is seen in Figure 3.11.
The loss stayed the same over the epochs and did not decrease.

Figure 3.11: Training and test loss for DenseNet over 100 epochs for binary classifica-
tion. Note the loss axis scale range is very close together in value for the purpose of
visualisation.
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3.3.3 Spectrograms as Input

Time-frequency representation of EEG data

As CNNs are especially suited for processing imaging data, an alternative approach
is to transform EEG signals into two-dimensional image representations. One impor-
tant constraint when doing so is to retain both time and frequency information in an
image — similar to speech signals, the most salient features of multi-channel EEG
often reside in the frequency domain.

One way to achieve this is to transform the data into spectrograms, which takes
a Fourier transform of sub-segments of the signal to compute its power spectrum, as
described in Section 3.3.1. However, concatenating spectral measurements of all the
electrodes into a single feature vector clearly ignores the inherent structure of the
EEG data in time, frequency, and space.

Instead, the EEG channels can be treated like colour channels of an image. Once
transformed into an image, each pixel along the vertical axis of the spectrogram cor-
responds to spectral frequency, and each pixel along the horizontal axis corresponds
to the time bins. The numerical ”brightness” value of a pixel is then equal to the out-
put value of the spectrogram at the particular time and frequency corresponding to
that pixel. This transformed time series for each individual channel can be treated
as a monochromatic image. By stacking together spectrogram images formed by
each EEG channel, the same way colour channels are stacked together in colour im-
ages, spectrograms generated from multi-channel EEG data can be processed in the
same way standard images are processed in computer vision tasks, and preserving
inherent structures in frequency and time.

The spectrograms were generated prior to input into the network, as detailed in
Section 3.3.1, using the scipy.signal.spectrogram function with a Hann window-
ing function. For every electrode channel, a spectrogram is generated for each rele-
vant frequency band. As neural networks expect normalised inputs, the logarithm of
the spectrograms are taken and used as input into the following CNNs (Figure 3.12).

Similar to [17], a single-frame approach and multi-frame approach were used. In
the single-frame approach, a single spectrogram image was generated by applying
FFT to the whole trial duration (30 seconds), so that for every trial only a single
multi-channel image was produced. The time window length is set to 1280 with
overlapping segments of 640 (50% overlap), generating images with 165 frequency
bins and 45 time bins. In the multi-frame approach, a spectrogram is computed for a
single segment (5 seconds) (256 window size with 50% overlap) and this input goes
through data augmentation detailed in 3.2 to generate 11 images of 34 frequency
bins and 37 time bins per trial. A particular challenge for spectrograms is the trade-
off between time and frequency.

38



Chapter 3. Methods 3.3. ARCHITECTURE IMPLEMENTATION

Figure 3.12: Log spectrogram visualisation with a window length of 1280 and overlap
of 640 with Hann window function of gamma frequency band from a single channel in a
trial where the subject gave the rating ”5”. More brightness in colour (yellow) indicates
higher spectral values, and lower brightness in colour (blue) indicates lower spectral
values.

SpecNet

Architecture SpecNet is a network inspired by the architecture described in [86],
which is a shallow network with small convolution sizes. As the number of distinct
spectral features in EEG is much smaller (homogeneous) than it is in a natural image,
the model complexity should be reduced to prevent overfitting.

The network takes the spectrogram dimensions frequency× time from each of the
14 electrode channels as input. It then uses 8 filter kernels to perform convolutions
of size 14 × 3 — 14 for the number of electrode channels to learn global feature
correlates. The next layer has 16 kernels with a small kernel size 1 × 1 followed by
a max-pooling layer with size 1 × 2. A dropout of 0.5 is used on the output of the
layer, which then inputs into the fully-connected dense layer with 128 dimensions.
A dropout of 0.5 is used again on the output and finally the softmax activation gives
the output. ReLU is used as the activation function in all layers.
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Layer Operation Stride Output Shape Parameters

Input E × F × T
1 8 × Conv2D (14 × 3) (1,2) 8 × 21 × 18 4,712

ReLU - 8 × 21 × 18 -
2 16 × Conv2D (1 × 1) (2,2) 16 × 11 × 9 144

ReLU - 16 × 11 × 9 -
MaxPool2D (1 × 2) (1,2) 16 × 11 × 4 -
Dropout(0.5) - 16 × 11 × 4 -

3 Flatten - 704 -
FC - 128 90,240
ReLU - 128 -
Dropout (0.5) - 128 -

4 Softmax - K 774
Total 95,870

Table 3.4: Proposed SpecNet architecture. E is number of electrodes, F is number of
frequency bins in specrogram, T is number of time bins in spectrogram, and K is number
of classes. In this table E = 14, F = 34, T = 37, K = 6. FC = Fully-Connected.

Training The training parameters are as described in 1D CNN, with the exception
that RMSProp was used as the optimiser and a weight decay of 0.0005 was used. A
classifier was trained for each of the six frequency bands using the filtered dataset.
The training and validation loss is shown in Figure 3.13. Over 100 epochs, the loss
value barely decreases and no difference was found with longer training epochs.

Figure 3.13: Training and test loss for SpecNet over 100 epochs for multiclass classifi-
cation. Note the loss axis scale range is very close together in value for the purpose of
visualisation.

40



Chapter 3. Methods 3.3. ARCHITECTURE IMPLEMENTATION

ResNet

Architecture The last architecture tested is an implementation of a Residual Net-
work (ResNet) [44]. ResNet is a highly successful state-of-the-art ImageNet classifier
widely used in image recognition tasks. ResNets add the input of a convolutional
layer to the output of the same layer, to the effect that the convolutional layer only
has to learn to output a residual that changes the previous layer’s output. This iden-
tity short-cut function is shown in Figure 3.14 — the shortcut connections perform
identity mapping, and their outputs are added to the outputs of the stacked layers.
This allows ResNets to be successfully trained with a much larger number of layers
than traditional convolutional networks. [97] have experimented with a 31-layer
ResNet for EEG motor imagery classification, but this was on raw EEG data rather
than image representations.

The idea with this implementation is to treat the spectrogram representations
as natural images and test whether standard image classifiers could discriminate
feature representations in spectrograms as in natural images. A ResNet with 18 lay-
ers, modified from the implementation in the torchvision library was trained from
scratch using 14 channels instead of the original 3 channel architecture designed for
coloured-images. To prevent overfitting, ResNet-18, the shallowest of ResNet archi-
tectures, is chosen, and the number of feature maps in each layer is reduced. As in
the original implementation, a 7 × 7 convolution is performed on the 14 channel
input with stride 2, followed by 3 × 3 max-pooling. There are then 4 blocks of 3 × 3
convolutions with with layer size 2. However, instead of using increasing sizes of 64,
128, 256, 512 feature maps in each block in the original network, this implemen-
tation reduces the feature maps to 8, 16, 16, 32. This is because the discriminative
spectral features in EEG data is far less distinctive and fewer than it would be in a
natural image.

Figure 3.14: Residual block used in ResNet[44]
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Layer Operation Stride Output Shape

Input E × F × T
Conv1 Conv(7 × 7)-BN-ReLU (2,2) 8 × 17 × 19
Pool MaxPool(3 × 3) (2,2) 8 × 9 × 10

Conv2-X
[

Conv(3× 3)-BN-ReLU
Conv(3× 3)BN-ReLU

]
× 2 (2,2) 8 × 9 × 10

Conv3-X
[

Conv(3× 3)-BN-ReLU
Conv(3× 3)-BN-ReLU

]
× 2 (2,2) 16 × 5 × 5

Conv4-X
[

Conv(3× 3)-BN-ReLU
Conv(3× 3)-BN-ReLU

]
× 2 (2,2) 16 × 3 × 3

Conv5-X
[

Conv(3× 3)-BN-ReLU
Conv(3× 3)-BN-ReLU

]
× 2 (2,2) 32 × 2 × 2

Classification AvgPool(1 × 1) (1,1) 32 × 1 × 1
1000D fully-connected, softmax

Table 3.5: Modified ResNet implementation. E is number of electrodes, F is number
of frequency bins in spectrogram, T is number of time bins in spectrogram, and K
is number of classes. In this table E = 14, F = 34, T = 37, K = 6. BN = Batch
Normalisation.

Training The training procedure was as described previously, with Adam as the
optimiser and a weight decay set to 0.0001. The batch size was set to 64. The
training and validation loss is seen in Figure 3.15. Over 100 epochs, the decrease in
loss is very little and plateaus after around 50 epochs.

Figure 3.15: Training and test loss for ResNet over 100 epochs for multiclass classifi-
cation. Note the loss axis scale range is very close together in value for the purpose of
visualisation.
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Results

Architecture 6-Class Test Accuracy Binary Test Accuracy

SVM 45.13% ± 0.80% 77.82% ± 1.65%
kNN 44.11% ± 1.36% 76.72% ± 1.28%
2D CNN 25% 61.07%
SpecNet 21.59% 61.08%
ResNet-18 20.42% 50.62%
DenseNet 19.62% 49.26%
1D CNN 19.55% 49.40%
Chance 16.67% 50%

Table 4.1: Classification accuracy results for architectures tested.

Five different CNNs were tested using three different types of data: raw time se-
ries data, processed time series data, and spectrogram representations. The models
were used to predict a 6 classes of 0 - 5 ratings of liking and binary classes of ”liked”
and ”disliked”, which consisted of the labels 0, 1 for ”disliked” and the labels 4, 5 for
”liked”.

The two baseline models surpassed the performance of all deep learning models.
Out of the two models, SVM performed best with 45.13% ± 0.80% for 6-class clas-
sification and 77.82% for binary classification. kNN performed comparable to SVM
with 44.11% ± 1.36% and 76.72% ± 1.28%. Both are well above chance level and
the confusion matrices are shown in Figure 4.1 and 4.2. Nevertheless, one thing
to note is that kNN classification required considerably less computation time com-
pared to SVM, a technical parameter which may be significant for the design of a
future real-time music appraisal recognition system.

Our models did not reach the performance reported in the original paper [38],
who reported a test accuracy of 86% for binary classification in kNN. However, [38]
used an active paradigm in their experimental design, whereas we used a passive
listening paradigm, which is a harder classification task. Taking this into consider-
ation, and the fact that no extensive optimisation has been done for these models,
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the results show that traditional feature extraction and machine learning methods
are able to classify music liking to a good extent.

Figure 4.1: Confusion matrix for 6-class classification using SVM

Figure 4.2: Confusion matrix for 6-class classification using kNN

The deep learning models, on the other hand, were not able to effectively classify
music preference. 1D CNN performed worse, with test accuracies 19.55% for mul-
ticlass and 49.4% for binary classification — basically at chance level. As the least
complex model of the five architectures, the model was not able to learn the EEG
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features at all. Although DenseNet has been successfully used for EEG classification
before [122], it also failed to learn features for music liking on our datasets.

Raw, filtered, and envelope datasets, as detailed in Section 3.1.4, were tested as
inputs for the time series models 1D CNN, 2D CNN, and DenseNet, as recent lit-
erature has shown promise for the use of raw data as inputs into CNNs [91] [29].
However, no difference was found between the datasets on all of the modelss. Al-
though 2D CNN appeared to perform slightly better with raw data than on envelope
or filtered data, it was not a significant difference and likely due to noise, given that
there was no change in training and validation loss, as seen in Figure 3.8.

Models using spectrograms as input have also failed to classify music preference
on the dataset. At 21.59% and 20.42% for SpecNet and ResNet respectively, the per-
formance is close to chance and this is shown in the plateauing high loss in training
and validation. A recent work by [117] also showed that without aggressive data
augmentation, ResNet failed to surpass traditional machine learning methods. Al-
though the loss appeared to decrease at a very small scale for SpecNet (Figure 3.13,
tuning different learning rates and training with longer epochs did not improve the
performance, as the models simply started to overfit. Using single-frame and multi-
frame approaches also did not make a difference to the performance of both models.

All models were also experimented with using different configurations of regu-
larisation techniques, such as batch normalisation and dropout, which are used in
state-of-the-art classifiers [49] and have shown to significantly improve performance
in EEG classification studies [96] [97]. However, this did not improve the perfor-
mance of the models on our dataset. Different lengths of window overlap frames
(Section 3.2), at 768 (3 seconds), 1280 (5 seconds), and 2560 (10 seconds), have
also been tested, but also failed to make a difference. All results in Table 4.1 used
1280 data points per window frame.

Inter-subject variability is an important limitation for EEG data. As EEG classifi-
cation is hard to generalise across subjects, a per-subject classification attempt was
also attempted — that is, a model was trained for every individual subject. However,
this did not yield any effective results, as the amount of data for a single subject is
too limited.
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Discussion and Conclusion

This project aimed to examine whether deep learning architectures can be used for
the prediction of music preference and the feasibility of a deep learning-powered
bio-personalised music recommendation system. On all accounts, the deep learning
models have failed to surpass the baseline models using traditional machine learn-
ing. The most likely explanation for this is that there was simply not enough data for
the deep learning networks to learn the representations of music liking effectively.

Nonetheless, below lists some points of improvement and further approaches for
the implementations of this project:

• More rigorous hyperparameter optimisation. No formal hypermarameter opti-
misation methods were used for the deep learning methods, as the focus was
on experimenting with different architectures. A more systematic search using
methods such as grid search [19] or Bayesian optimisation [101] can be used
to find a good set of hyperparameters, an important aspect for deep learning
algorithms.

• Experimenting with hybrid architectures. Related works have shown that hy-
brid architectures combining CNNs and LSTMs have achieved good perfor-
mance using stacked CNN layers to process spatial information and LSTM cells
to process temporal information [17][45] [62][29]. In the early stages of this
project, basic LSTM architectures were tested, but were not pursued as the per-
formance was no better than CNNs and due to time constraints. On a bigger
dataset, CNN+LSTM architectures could be an interesting approach for EEG
classification of music liking.

• Separating music ratings by familiarity. Our questionnaire included ”yes” or
”no” ratings of music familiarity that could’ve been utilised to aid classification
of music preference for both traditional machine learning and deep learning
approaches. [38] separated their classes into liked and familiar music and
like and unfamiliar music and achieved higher classification music for liked
and familiar music, possibly due to the role of familiarity to music-induced
affective responses [94].
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• Pre-selecting critical channels. To reduce the complexity of computing and in-
crease classification accuracy, [86] used pre-selected channels relevant to emo-
tion recognition tasks. This strategy could potentially be used on our dataset
as a feature reduction strategy, as [5] [57] have found that the EEG channels
located over the prefrontal cortex, in particular channel AF3, is the most im-
portant for classifying music liking.

As we often say, data is everything. Although recent reviews and studies [91]
[29] [126] have reported favourable classification performance for deep learning
model, [71] pointed out that for classification tasks with limited data, deep learning
approaches are actually the worst classifiers and are far out-performed by traditional
EEG and machine learning classifiers. Such may be the case for this project. With 60
trials from 22 subjects, the total number of trials used for training is 1320. Even after
rigorous data augmentation, the total sample size for training and testing is only
14,520 across the 6 classes (with window frames of 1280). In contrast, computer
vision tasks often have large, publicly available datasets on the scale of millions of
samples for training. The fact that the traditional learning methods were able to
successful classify music liking adds the argument that the problem for the deep
learning approach lies in the limited amounts of data.

The difficulty of training a deep learning model on limited data is compounded
by the fact that we used a more challenging passive BCI paradigm. It is conventional
wisdom that a good feature of input into a CNN should have visual differences dis-
tinctive enough to be apparent to a human observer. This is true of EEG classification
tasks such as epileptic onset detection or sleep stage classification, as these tasks tra-
ditionally relied on the visual inspection of human experts anyway. Many successful
EEG classification models also use ERP-based paradigms, which have more appar-
ent changes in waveform than passive BCI tasks. Although the neural substrates of
music preference and EEG biomarkers for music liking is well-established (Section
2.2), it is still a relatively new sub-field, and to the best of this author’s knowledge,
there are currently no published deep learning models specific to the classification
of music liking.

Another challenge for EEG classification is inter-subject variability. EEG data is
hard to generalise across different individuals. It might not be enough to have many
samples from few subjects — instead, the training data should aim to have as many
different subjects as possible for a classifier to be able to classify across different
individuals. The data collected for this project had a gender imbalance skewing in
favour of males, which may have biased the training data.

Depending on the implementation of a bio-personalised music recommendation
system, an opposite approach might be to eliminate the challenge of inter-subject
variability altogether — perhaps collecting hours of data from a single subject and
training a personalised classifier, similar to the scheme shown in Figure 2.9. In the
EEG studies previously reviewed, those that train classifiers on a per subject basis
can reach much higher accuracies than those that train classifiers that generalise
across subjects [9] [91]. The downside, of course, is that a separate classifier would
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have to be trained for every new user, which can be computationally expensive,
time-consuming, and impractical to implement in real life.

A promising solution to the limited data and inter-subject variability problem is
transfer learning. Transfer learning is based on the idea that knowledge used in
solving one task could also be useful for another related task. For example, for the
mobile EEG monitoring of epileptic seizures, [82] used transfer learning to fine-
tune generalised models of epileptic onset using patient-specific data and found that
the approach outperformed both the generalised model and purely patient-specific
models.

Thinking more broadly, we can also use transfer learning for broader fields that
share similarities with EEG classification. A good example is audio signal process-
ing. The extraction of spectral features in the frequency domain is very similar for
audio and EEG processing — both use Fourier transformed spectrograms, and audio
recognition is a much more common classification task than EEG. The acquisition of
EEG data is time-consuming and often differ in experimental protocols depending
on the task — for this reason EEG data is often privately acquired and there are very
few publicly available datasets [91]. In contrast, large-scale datasets of labelled au-
dio events are publicly available, such as AudioSet by Google Research [90]. These
datasets could be used to pre-train deep learning layers which can then be used as
feature extractors in the frequency domain for EEG specific models, such as Spec-
Net as implemented in this project. In addition, audio signals could also potentially
be pitch-shifted and re-sampled (audio signals have different sampling rates and
frequency ranges) to match wave-forms that are more characteristic of EEG data.

Trying to determine the subjective emotional evaluation of a piece of music some-
body listened to based on EEG is a challenging problem. Attempting to do this with
a small training set makes the task even harder. Overall, despite the negative re-
sults from the deep learning models, this work contributed to the collection of new
EEG data and showed that music liking on a scale of 6 classes can be classified us-
ing spectrogram-based feature extraction methods and traditional machine learning.
Given larger datasets, future works may focus on using transfer learning to improve
deep learning for music preference classification.
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List of Songs
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Artist Title
John Lennon Imagine
Cutting Crew (I Just) Died In Your Arms
Tears for Fears Shout
U2 With or without you
Def Leppard Love Bites
Morrisey Every day is like Sunday
Sinead OConnor Nothing Compares to U
R.E.M. Losing My Religion
Manic Street Preachers Motorcycle Emptiness
Everything but the girl Missing
No Doubt Dont Speak
Mansun Wide Open Space
Spice Girls Wannabe
The Killers Mr Brightside
Leona Lewis Bleeding Love
Coldplay Viva la vida
Alicia Keys Empire state of mind (feat Jay z)
B.o.B Nothin On You (feat. Bruno Mars)
Bruno Mars Grenade
Adele Someone like you
David Guetta Titanium (feat Sia)
Emeli Sande Read All About it Part III
Rihanna Diamonds
Birdy Wings
Daft Punk Get Lucky ft. Pharrell Williams
Ed Sheeran Sing
Taylor Swift Shake it Off
Ellie Goulding Love Me Like You Do
Jason Derulo Grenade
Ed Sheeran Perfect

Table A.1: List of 30 songs used in the experiment in random order. This would consist
of one experimental session.

50



Chapter A. List of Songs

Artist Title
Modjo Lady Hear Me Tonight
Raining Pleasure Fake
Snow Patrol Chasing Cars
King of Leon Use somebody
The Black Eyed Peas I Gotta Feeling
Bruno Mars Just the way you are
Eminem Love The Way You Lie (ft. Rihanna)
Jessie J Price Tag ft. B.o.B
Emeli Sande My Kind of Love
P!nk Try
Florence + The Machine Spectrum
Ed Sheeran Thinking out Loud
Pharrell Williams Happy
The Weeknd Cant Feel My Face
Adele When we were young
Justin Timberlake Cant Stop the Feeling!
Ed Sheeran Shape of You
Chainsmokers & Coldplay Something Just like this
Led Zeppelin Stairway To Heaven
Aerosmith Dream On
George Michael Careless Whisper
Pet Shop Boys Its a sin
Whitesnake Is this love
Alannah Myles Black Velvet
Depeche Mode Enjoy the Silence
Queen Bohemian Rapsody
Nirvana Smells Like Teen Spirit
Tasmin Archer Sleeping Satellite
Oasis Wonderwall
Elton John Something About the Way You Look

Tonight

Table A.2: List of 30 songs used in the experiment in random order. This would consist
of one experimental session.
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Ethics Consideration Checklist

The table below outlines key ethical questions which were considered during this
project. Below expands on any questions which were answered positively.

• Does your project involve human participants?
22 participants were recruited to participate in the EEG experiment, approved
by ethics declaration in the department. All participants signed an informed
consent form and all data were anonymised.

• Does your project involve personal data collection and/or processing?
All participant’s EEG data were used as training data and stored on Imperial
College London Department of Computing servers. They were also asked to
complete a questionnaire which asked information on their ethnicity, age, dis-
abilities, and education level.

• Does it involve the collection and/or processing of sensitive personal data?
See previous answer.

• Does it involve tracking or observation of participants?
Participant’s EEG data were tracked during the task of music listening.

• Does your project involve further processing of previously collected per-
sonal data (secondary use)?
A dataset of EEG data collected previously from associates in Greece was used
in the early stages of the project to test architectures and experiment on.

• Does your project have the potential for military applications?
BCIs are already an area of interest to the Defense Advanced Research Projects
Agency Program (DARPA) in the USA. Potentially military applications might
include mental state monitoring for soldiers or controlling drones with the
mind.

• Does your project have an exclusive civilian application focus? The project
is intended to assess the feasibility of a bio-personalised music recommenda-
tion system using deep learning.
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• Are there any other ethics issues that should be taken into consideration?
All ethical questions associated with potential future ”mind reading” technol-
ogy.
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Yes No
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Does your project involve human participants? X
Does your project involve human cells or tissues?? X
Does your project involve personal data collection and/or processing? X
Does it involve the collection and/or processing of sensitive personal
data?

X

Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? X
Does your project involve further processing of previously collected per-
sonal data (secondary use)?

X

Does your project involve animals? X
Does your project involve developing countries? X
If your project involves low income countries, are any benefit-sharing
actions planned?

X

Could the situation in the country put the individuals taking part in the
project at risk?

X

Does your project involve the use of elements that may cause harm to
the environment, animals or plants?

X

Does your project deal with endangered fauna and/or flora/protected
areas?

X

Does your project involve the use of elements that may cause harm to
humans, including project staff?

X

Does your project involve other harmful materials or equipment? X
Does your project have the potential for military applications? X
Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require
export licenses in accordance with legislation on dual use items?

X

Does your project affect current standards in military ethicss? X
Does your project have the potential for malevolent/criminal/terrorist
abuse?

X

Does your project involve information on the use of biological, chem-
ical, nuclear security sensitive materials and explosives, and means of
their delivery?

X

Does your project involve the development of technologies or the cre-
ation of information that could have severe negative impacts on human
rights standards?

X

Does your project have the potential for terrorist or criminal abuse X
Will your project use or produce software for which there are copyright
licensing implications?

X

Will your project use or produce goods or information for which there
are data protection, or other legal implications?

X

Are there any other ethics issues that should be taken into considera-
tion?

X
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